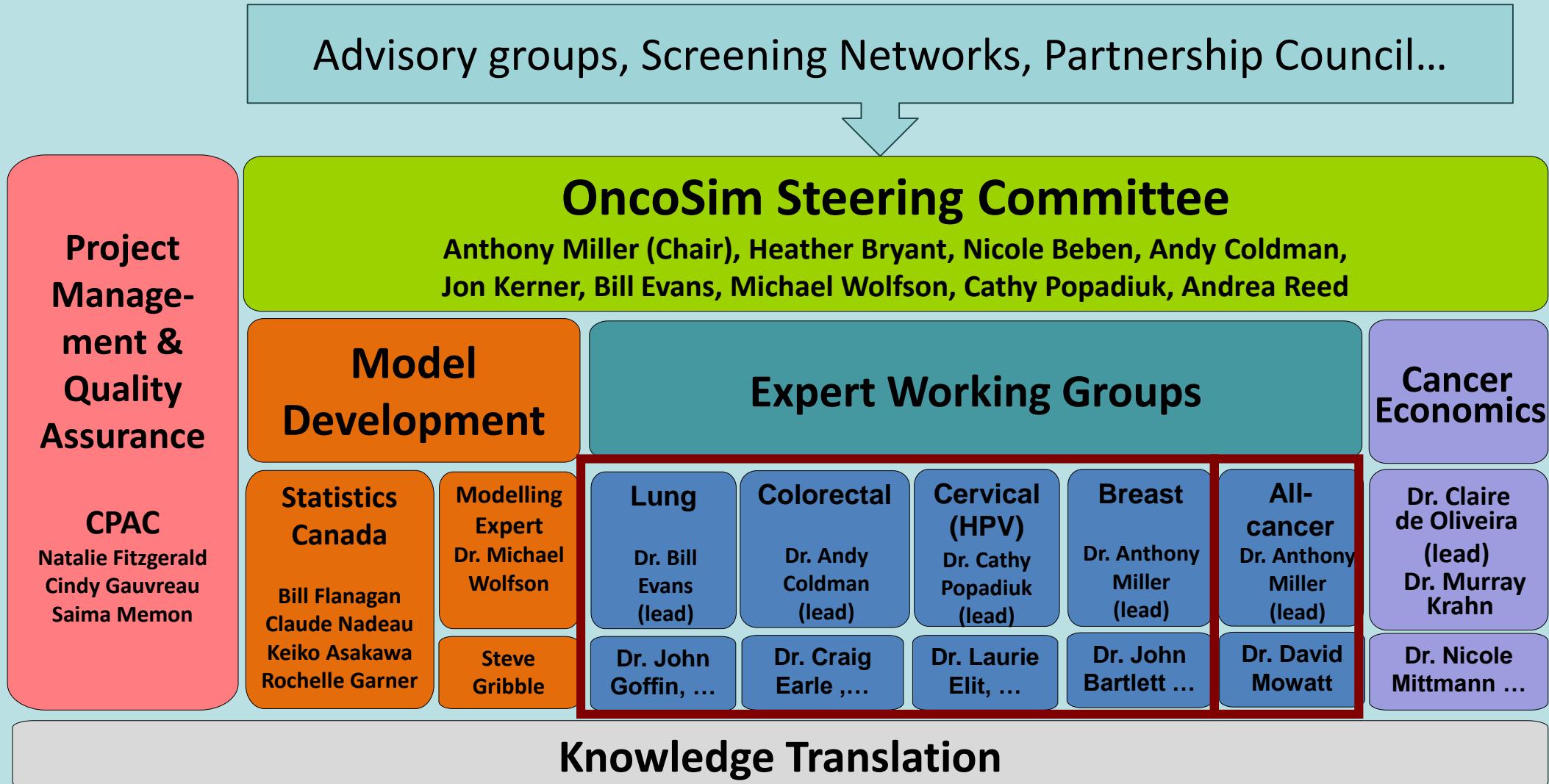


Assessing Cancer Control Initiatives in Canada The Oncology Simulation Model (OncoSim)

Overview, Methods, and Applications

Michael Wolfson, University of Ottawa
mwolfson@uottawa.ca

With great thanks to the OncoSim team at the Canadian Partnership Against Cancer - Cindy Gauvreau and Saima Memon and at the Health Analysis Division, Statistics Canada - Keiko Asakawa, Bill Flanagan, Claude Nadeau, and Rochelle Garner, and to Rainer Fehr, Johan Mackenbach, Fintan Hurley and Odile Mekel and Universität Bielefeld for organizing and supporting this workshop


[Formerly the Cancer Risk Management Model]

OncoSim development is continuing as a collaboration between Statistics Canada and the Canadian Partnership Against Cancer through funding from Health Canada

OncoSim - Objectives

- Provide a comprehensive, web-based platform that projects **population-based health** and **economic** impacts of cancer control programs in Canada
- **Mobilize** this information for health system leaders and their advisors to help **inform policy decisions** to reduce the burden of costs and disease posed by cancer on the population

How OncoSim is organized

Conceptual framework

Sample key policy questions

LUNG CANCER

- Under what conditions would screening by low-dose computed tomography be most cost-effective in Canada? (e.g., what smoking history and age eligibility, screen interval, adjunct smoking cessation program)

COLORECTAL CANCER

- What would be the cost and benefit of moving a 3rd line chemotherapy drug (expensive) to 1st line compared with investing resources into screening?

CERVICAL CANCER

- What would be the cost-effectiveness and resource impact of alternative cervical cancer screening programs in conjunction with human papillomavirus (HPV) vaccinations?

BREAST CANCER

- What would be the impact of moving from primarily age-based to “precision health” risk-based breast cancer screening on women’s health-adjusted life-years and ICERs?

OncoSim Engine: Microsimulation

- **Discrete-event, continuous time, competing risk microsimulation model**
- **Uses both interacting-agent (HPV, genotypes and pedigrees) and non-interacting agent (oncogenesis, major cancer sites) models**
- **Empirically based, representative of the Canadian population**
 - risk factors, demography, incomes, health status
- **Individual-level simulation**
- **Results at various levels (geography, population/patient groups) by aggregations over synthetic but representative population sample**
- **Projections to 2050 and ‘what-if’ scenarios for comparative analysis**

Many Diverse Data Sources Integrated

Data Type	Source
Mortality, Birth, Population projections	Vital Statistics (1950-2005), Census (2006, 2011)
Incidence, Staging, (Survival)	Canadian Cancer Registry (1992-2010)
Cancer Survival by stage	British Columbia Cancer Registry Data (1992-2012) Chart review (1991-92), Literature (1981, 1990-2000, 2005),
Smoking rates	Canadian Community Health Survey (CCHS) (2000-2007), National Population Health Survey (1994-2004), Canadian Health Survey (1979)
Time use data	General Social Survey (2005)
Earnings, Transfers, and Taxes	Census 2006, SPSD/M* v16.1 (2005)
Total health care expenditures	Canadian Institute for Health Information (2006)
Health care costs: diagnosis, treatment, follow-up, palliative and terminal care	Ontario Case Costing Initiative (2007-2008), Provincial formulary (2009), Provincial Ministries of Health (2009)
Current treatment practice	Expert Opinion, Ontario admin data
Screening, Lung cancer risk equation, Radon exposure, sexual network, HPV virus transmission	Canadian Breast Cancer Screening Database, British Columbia admin data, CCHS, Reports, Literature
Health status	Classification and Measurement System (CLAMES), CCHS

Innovative Use of Data - Examples

■ Smoking Dynamics

- Various Canadian national health surveys to derive transition matrices among smoking status (never smoked, light, heavy or former smoker)

■ Breast Cancer Genetics

- union formation / dissolution and parity-specific fertility rates + Mendelian and polygenic risk biological inheritance

■ Treatment Practice

- Linked provincial-level administrative data to obtain the distribution of breast cancer treatment by type (e.g., surgery, radiotherapy) and by biology (e.g., age, hormone receptor, tumour grade)

■ Survival

- Provincial-level cancer registry to estimate breast cancer survival by progression (initial diagnosis → recurrences → breast cancer death)

Model Assessment

Consultation (external)

Current practice/costs reviewed by experts from across Canada not involved in building model

Case study evaluations

Face Validity

Inspect simulated individual life trajectories for plausibility

Internal validation

Ensure model outputs are consistent with model inputs

Example: Do incidence rates generate the expected number of cancer cases?

External validation

Ensure model outputs are consistent with other data sources not used to build model

Example: Can we replicate outcomes from other studies (e.g., RCTs)?

Calibration (model fitting)

An iterative process of parameter estimation to ensure that the underlying model processes can match a pre-selected set of target data

Scenario: Base Case 2016-01-04 with 70% HPV vaccination rate
 This scenario is linked to scenario HPV vaccination 12 year old girls 70% coverage 100%

File View Dimensions Help

Output tables Input parameters

Status: Completed [New scenario](#)

Risk factors

+ Smoking

+ Radon

Cancer parameters

Cervical Cancer

+ HPV

+ Screening

Cervical screening char...

Cervical screening pro...

Probability a woman may...

Probability a woman may...

Maximum number of rec...

Probability that a cytolog...

Probability of getting a c...

Cervical screening follow...

Maximum number of cor...

+ Cervical screening follow...

Cervical cancer screening a...

+ Experts only

+ Incidence

View as: Data [Chart](#)

Parameter: Cervical screening program (Dispatcher) ①

Screening era	Future screening era	Scenario	Base Case
Screening program element	0 1 2	↑ ↓ ↑ ↓ ↑ ↓	
Characteristics of screening protocol			
Minimum recruit age	999 999 21		
Maximum recruit age	999 999 69		
Minimum recruit year	9999 9999 2015		
Maximum recruit year	9999 9999 9999		
Minimum re-screen age	70 16 21		
Maximum re-screen age	999 20 999		
Minimum re-screen year	2015 2015 2015		
Maximum re-screen year	9999 9999 9999		
Minimum vaccination rate of peers	0 0 0		
Maximum vaccination rate of peers	1 1 1		
HPV vaccinated? (0=no, 1=yes, 2=either)	2 2 2		
Time without a positive test outcome (years)	10 0 0		
Maximum number of regular screens	99 99 99		
Maximum number of recruitment attempts (this eleme...	0 0 1		
Maximum number of recruitment attempts (at large)	0 0 1		
Recruitment rate	0 0 0.9		
Rescreen rate	0 0 0.8		
Quit rate	1 0 0		
Frequency of regular screening (minimum)	1 1 3		
Frequency of regular screening (maximum)	1 1 3		
Protocol to be used	1 1 1		
Apparatus to use for regular screening	1 1 1		

“Dispatcher” A useful feature in OncoSim allowing users to set up complex scenarios

Control screen age & year

Control screening by vaccination status

Control screening rate, frequencies and
 termination

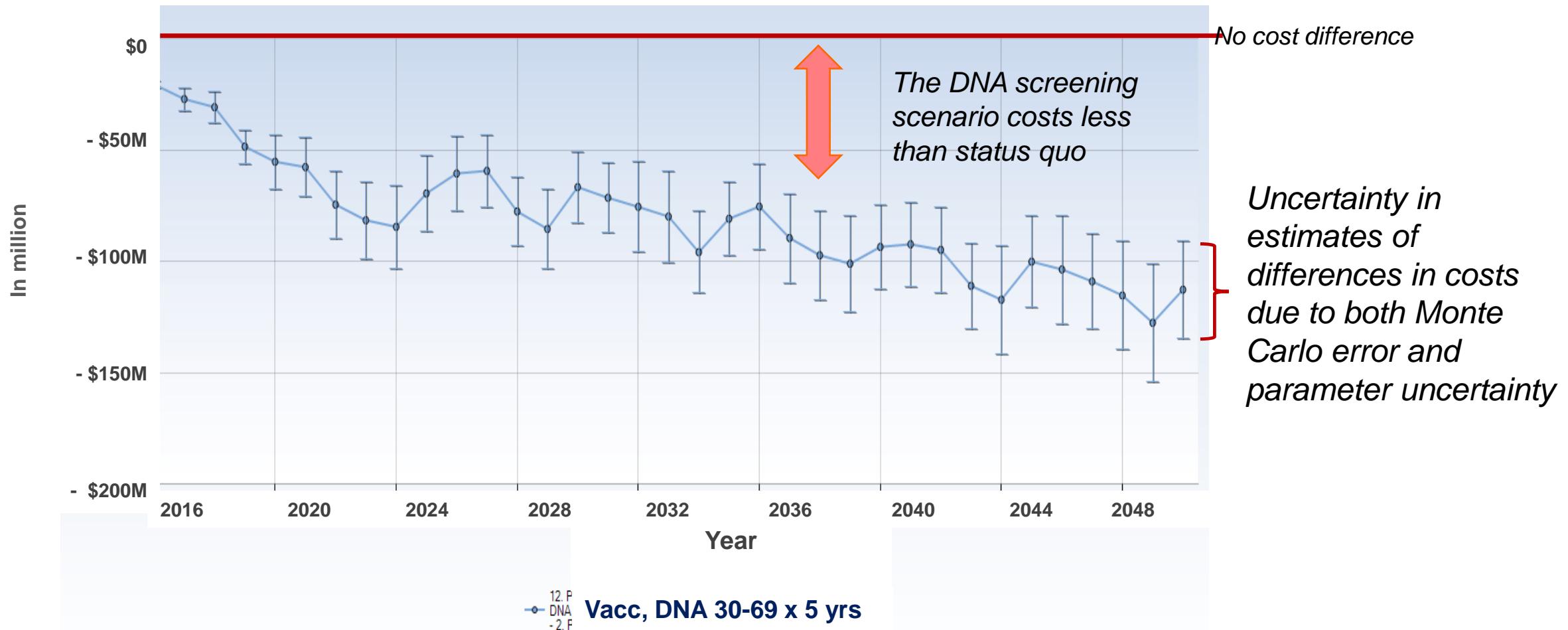
Control screening modality and follow-up
 protocols

Application – An Example

What would be the health and economic impact of various human papillomavirus (HPV) vaccination and cervical cancer screening strategies?

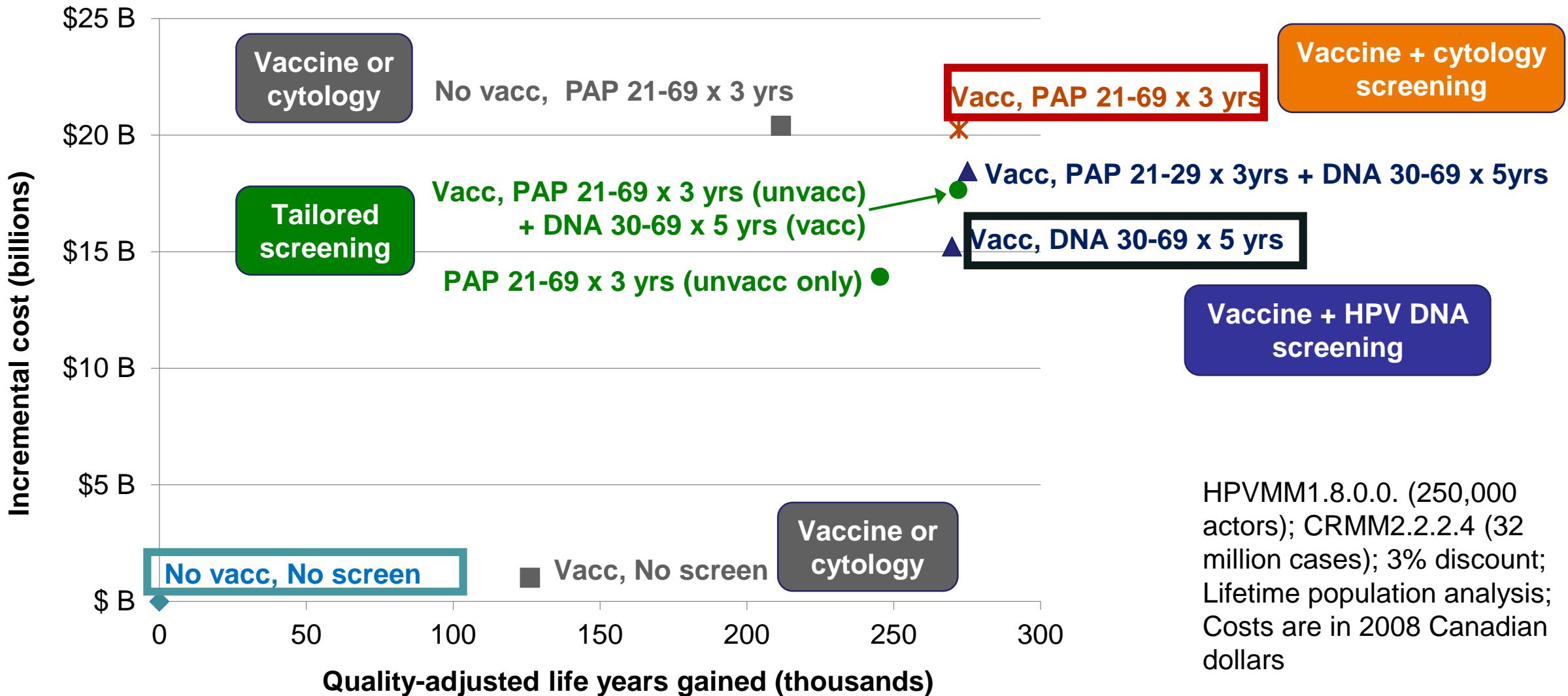
- What the cost-effectiveness and budgetary impact would be if we...
 - continue the status-quo vaccination and screening strategies into the future?
 - did not vaccinate at all and/or stop screening?
 - change screening modality?
 - tailor screening programs based on vaccination status?

Sample scenarios


Scenario	Screening	
No vaccine, No screen	No screening	1
Vaccine, No screen	No screening	2
No vaccine, Cytology	Cytology, 21-69 x 3 years	3
Vaccine + Cytology (Status quo)	Cytology, 21-69 x 3 years	4
Vaccine + HPV DNA screening	<ul style="list-style-type: none"> • Cytology, 21-29 x 3 years • HPV DNA, 30-69 x 5 years 	5
	HPV DNA , 30-69 x <u>5</u> years	6
Vaccine + Tailored programs	<ul style="list-style-type: none"> • Cytology, 21-69 x 3 years <u>for unvaccinated</u> • No screening <u>for vaccinated</u> 	7
	<ul style="list-style-type: none"> • Cytology, 21-69 x 3 years <u>for unvaccinated</u> • HPV DNA, 30-69 x 5 years <u>for vaccinated</u> 	8

Key assumptions:
 Vaccine start year = 2008
 Alternative screening strategies start year = 2015

Vaccinate 12-year girls annually, 70% vaccination rate, perfect vaccine efficacy, quadrivalent vaccine


Incorporating Uncertainty

Difference in total costs from status quo (include costs of vaccine, screening and treatment)

HPVMM1.8.0.0. (250,000 actors); CRMM2.2.2.4 (32 million cases); Costs are in 2008 Canadian dollars undiscounted; **Results are demonstration only - Not for citation**

Cost-effectiveness

Results are demonstration only - Not for citation

How the model has been used

- **National screening networks support**
 - Cervical, Colorectal, Lung and Breast screening networks

- **Canadian Task Force on Preventive Health Care Guidelines:**

Colorectal cancer screening (March 2016)

Lung cancer screening (April 2016)

GUIDELINES **CMAJ**

Recommendations on screening for colorectal cancer in primary care

Canadian Task Force on Preventive Health Care*

CMAJ Podcasts: author interview at <https://soundcloud.com/cmajpodcasts/151125-guide>

Competing interests: None declared.
This article has been peer reviewed.

Colorectal cancer is the second most common cause of cancer-related death in men and the third most common in women. Recently, all Canadian programs recommend screening with guaiac fecal occult blood testing (gFOBT) or fecal immunochemical testing (FIT).

CMAJ **GUIDELINES** **CME**

Recommendations on screening for lung cancer

Canadian Task Force on Preventive Health Care*

CMAJ Podcasts: author interview at <https://soundcloud.com/cmajpodcasts/151421-guide>

Competing interests: None declared.
This article has been peer reviewed.

Lung cancer is the most common cause of cancer-related deaths and the most commonly diagnosed cancer among Canadians — an estimated 26 600 Canadians were diagnosed with lung cancer in 2013. Radiography,⁶ Ongoing trials of screening with low-dose CT⁷⁻¹⁰ are expected to provide more evidence on the effectiveness of screening for lung cancer with low-dose CT. The current recommendations

Model evaluation available at: www.canadiantaskforce.ca/ctfphc-guidelines

How the model has been used

- **Canadian Cancer Society, Canadian Cancer Statistics (www.cancer.ca/statistics)**
 - Projections of lung, colorectal and cervical cancer screening impact using OncoSim (2015)
 - Analysis of impacts of HPV vaccination and alternate screening methods on cervical cancer (2016)
- **Canadian Partnership Against Cancer Systems Performance Reports:**
 - Special appropriateness report – impact of inappropriate surgery in stage IV breast and colorectal cancer
- **Canadian Partnership Against Cancer, cervical screening in Canada**
 - Special feature on cervical cancer screening in young women
- **Alberta STE* Report, Institute of Health Economics**
 - Impact of low dose computed tomography for the screening of lung cancer in adults (www.health.alberta.ca)

*STE = “ Social and System Demographics Analysis,
Technology Effects and Effectiveness, Economic Analysis”

OncoSim: Methodological challenges

- Incorporating parameter uncertainty in a large-scale population health microsimulation model (vs small models, e.g. TreeAge)
 - Probabilistic Sensitivity Analysis (PSA) becoming common practice in health economics
 - need to move to super-computing / cloud CPU clusters
- Calibrations
 - calibration targets more numerous as model becomes more comprehensive
 - calibration targets not always coherent / mutually consistent
- Data requirement / gaps
 - keeping the model up-to-date as new data emerge
 - lack of nationally representative data (e.g., treatment practice, cancer staging – recall that Canadian health care largely in provincial jurisdiction)

OncoSim: Strengths

- **OncoSim is a powerful, accessible and user-friendly tool**
 - allows policy makers and researchers to run complex simulation models straightforwardly via the internet platform / user interface
- **OncoSim can:**
 - compare a wide variety of interventions
 - assess various clinical and economic outcomes and trade-offs
- **Models are calibrated, reflecting current and past socio-demographic and clinical behaviours of the Canadian population**
 - allowing the assessment of resource use and budgetary impact at the national and regional level

OncoSim: Policy Challenges

- General Policy Context
 - pervasive inability for the “system” to dis-invest in useless or ineffective interventions
 - lack of trust in “black box” methods
 - lack of “receptor capacity” (n.b. economics, cancer better than most; but clinical leaders often “quantitatively challenged”)
 - vested interests resistant to challenges to their prerogatives
- Credibility / Scepticism on Modeling
 - difficulties getting simulation model results published in leading academic journals
 - quantitative results “not real world data”
 - not based on “gold-standard” evidence, i.e. RCT
- Timeliness / Relevance / Model Flexibility
 - need to anticipate relevant policy questions / react to changing policy priorities
 - early planning for knowledge translation and mobilization – key for policy impacts
 - ability to incorporate emerging policy questions into model functionality (e.g. new evidence on risk factors, new screening scenarios, diffusion of new treatments)